3.24.67 \(\int \frac {1}{\sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=144 \[ -\frac {7396875 \sqrt {1-2 x}}{30184 \sqrt {5 x+3}}+\frac {44475 \sqrt {1-2 x}}{2744 (3 x+2) \sqrt {5 x+3}}+\frac {255 \sqrt {1-2 x}}{196 (3 x+2)^2 \sqrt {5 x+3}}+\frac {\sqrt {1-2 x}}{7 (3 x+2)^3 \sqrt {5 x+3}}+\frac {4616025 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{2744 \sqrt {7}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {103, 151, 152, 12, 93, 204} \begin {gather*} -\frac {7396875 \sqrt {1-2 x}}{30184 \sqrt {5 x+3}}+\frac {44475 \sqrt {1-2 x}}{2744 (3 x+2) \sqrt {5 x+3}}+\frac {255 \sqrt {1-2 x}}{196 (3 x+2)^2 \sqrt {5 x+3}}+\frac {\sqrt {1-2 x}}{7 (3 x+2)^3 \sqrt {5 x+3}}+\frac {4616025 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{2744 \sqrt {7}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 - 2*x]*(2 + 3*x)^4*(3 + 5*x)^(3/2)),x]

[Out]

(-7396875*Sqrt[1 - 2*x])/(30184*Sqrt[3 + 5*x]) + Sqrt[1 - 2*x]/(7*(2 + 3*x)^3*Sqrt[3 + 5*x]) + (255*Sqrt[1 - 2
*x])/(196*(2 + 3*x)^2*Sqrt[3 + 5*x]) + (44475*Sqrt[1 - 2*x])/(2744*(2 + 3*x)*Sqrt[3 + 5*x]) + (4616025*ArcTan[
Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(2744*Sqrt[7])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {1-2 x} (2+3 x)^4 (3+5 x)^{3/2}} \, dx &=\frac {\sqrt {1-2 x}}{7 (2+3 x)^3 \sqrt {3+5 x}}+\frac {1}{21} \int \frac {\frac {135}{2}-90 x}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx\\ &=\frac {\sqrt {1-2 x}}{7 (2+3 x)^3 \sqrt {3+5 x}}+\frac {255 \sqrt {1-2 x}}{196 (2+3 x)^2 \sqrt {3+5 x}}+\frac {1}{294} \int \frac {\frac {24075}{4}-7650 x}{\sqrt {1-2 x} (2+3 x)^2 (3+5 x)^{3/2}} \, dx\\ &=\frac {\sqrt {1-2 x}}{7 (2+3 x)^3 \sqrt {3+5 x}}+\frac {255 \sqrt {1-2 x}}{196 (2+3 x)^2 \sqrt {3+5 x}}+\frac {44475 \sqrt {1-2 x}}{2744 (2+3 x) \sqrt {3+5 x}}+\frac {\int \frac {\frac {2837025}{8}-\frac {667125 x}{2}}{\sqrt {1-2 x} (2+3 x) (3+5 x)^{3/2}} \, dx}{2058}\\ &=-\frac {7396875 \sqrt {1-2 x}}{30184 \sqrt {3+5 x}}+\frac {\sqrt {1-2 x}}{7 (2+3 x)^3 \sqrt {3+5 x}}+\frac {255 \sqrt {1-2 x}}{196 (2+3 x)^2 \sqrt {3+5 x}}+\frac {44475 \sqrt {1-2 x}}{2744 (2+3 x) \sqrt {3+5 x}}-\frac {\int \frac {152328825}{16 \sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx}{11319}\\ &=-\frac {7396875 \sqrt {1-2 x}}{30184 \sqrt {3+5 x}}+\frac {\sqrt {1-2 x}}{7 (2+3 x)^3 \sqrt {3+5 x}}+\frac {255 \sqrt {1-2 x}}{196 (2+3 x)^2 \sqrt {3+5 x}}+\frac {44475 \sqrt {1-2 x}}{2744 (2+3 x) \sqrt {3+5 x}}-\frac {4616025 \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx}{5488}\\ &=-\frac {7396875 \sqrt {1-2 x}}{30184 \sqrt {3+5 x}}+\frac {\sqrt {1-2 x}}{7 (2+3 x)^3 \sqrt {3+5 x}}+\frac {255 \sqrt {1-2 x}}{196 (2+3 x)^2 \sqrt {3+5 x}}+\frac {44475 \sqrt {1-2 x}}{2744 (2+3 x) \sqrt {3+5 x}}-\frac {4616025 \operatorname {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )}{2744}\\ &=-\frac {7396875 \sqrt {1-2 x}}{30184 \sqrt {3+5 x}}+\frac {\sqrt {1-2 x}}{7 (2+3 x)^3 \sqrt {3+5 x}}+\frac {255 \sqrt {1-2 x}}{196 (2+3 x)^2 \sqrt {3+5 x}}+\frac {44475 \sqrt {1-2 x}}{2744 (2+3 x) \sqrt {3+5 x}}+\frac {4616025 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{2744 \sqrt {7}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 79, normalized size = 0.55 \begin {gather*} \frac {50776275 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )-\frac {7 \sqrt {1-2 x} \left (199715625 x^3+395028225 x^2+260298990 x+57135248\right )}{(3 x+2)^3 \sqrt {5 x+3}}}{211288} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 - 2*x]*(2 + 3*x)^4*(3 + 5*x)^(3/2)),x]

[Out]

((-7*Sqrt[1 - 2*x]*(57135248 + 260298990*x + 395028225*x^2 + 199715625*x^3))/((2 + 3*x)^3*Sqrt[3 + 5*x]) + 507
76275*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/211288

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.26, size = 122, normalized size = 0.85 \begin {gather*} \frac {4616025 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{2744 \sqrt {7}}-\frac {\sqrt {1-2 x} \left (\frac {3430000 (1-2 x)^3}{(5 x+3)^3}+\frac {111805725 (1-2 x)^2}{(5 x+3)^2}+\frac {947868600 (1-2 x)}{5 x+3}+2488050019\right )}{30184 \sqrt {5 x+3} \left (\frac {1-2 x}{5 x+3}+7\right )^3} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[1 - 2*x]*(2 + 3*x)^4*(3 + 5*x)^(3/2)),x]

[Out]

-1/30184*(Sqrt[1 - 2*x]*(2488050019 + (3430000*(1 - 2*x)^3)/(3 + 5*x)^3 + (111805725*(1 - 2*x)^2)/(3 + 5*x)^2
+ (947868600*(1 - 2*x))/(3 + 5*x)))/(Sqrt[3 + 5*x]*(7 + (1 - 2*x)/(3 + 5*x))^3) + (4616025*ArcTan[Sqrt[1 - 2*x
]/(Sqrt[7]*Sqrt[3 + 5*x])])/(2744*Sqrt[7])

________________________________________________________________________________________

fricas [A]  time = 0.90, size = 116, normalized size = 0.81 \begin {gather*} \frac {50776275 \, \sqrt {7} {\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \, {\left (199715625 \, x^{3} + 395028225 \, x^{2} + 260298990 \, x + 57135248\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{422576 \, {\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^4/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

1/422576*(50776275*sqrt(7)*(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x
 + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(199715625*x^3 + 395028225*x^2 + 260298990*x + 57135248)*sqrt(5*x
+ 3)*sqrt(-2*x + 1))/(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)

________________________________________________________________________________________

giac [B]  time = 2.55, size = 377, normalized size = 2.62 \begin {gather*} -\frac {923205}{76832} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} - \frac {125}{22} \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )} - \frac {7425 \, {\left (487 \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{5} + 217280 \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} + 25693248 \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}\right )}}{1372 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^4/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

-923205/76832*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(
22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 125/22*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqr
t(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) - 7425/1372*(487*sqrt(10)*((sqrt(
2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^5 + 21728
0*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sq
rt(22)))^3 + 25693248*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*
sqrt(-10*x + 5) - sqrt(22))))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*
sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^3

________________________________________________________________________________________

maple [B]  time = 0.02, size = 250, normalized size = 1.74 \begin {gather*} -\frac {\left (6854797125 \sqrt {7}\, x^{4} \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+17822472525 \sqrt {7}\, x^{3} \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+2796018750 \sqrt {-10 x^{2}-x +3}\, x^{3}+17365486050 \sqrt {7}\, x^{2} \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+5530395150 \sqrt {-10 x^{2}-x +3}\, x^{2}+7514888700 \sqrt {7}\, x \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+3644185860 \sqrt {-10 x^{2}-x +3}\, x +1218630600 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+799893472 \sqrt {-10 x^{2}-x +3}\right ) \sqrt {-2 x +1}}{422576 \left (3 x +2\right )^{3} \sqrt {-10 x^{2}-x +3}\, \sqrt {5 x +3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3*x+2)^4/(5*x+3)^(3/2)/(-2*x+1)^(1/2),x)

[Out]

-1/422576*(6854797125*7^(1/2)*x^4*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+17822472525*7^(1/2)*x^3*a
rctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+17365486050*7^(1/2)*x^2*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x
^2-x+3)^(1/2))+2796018750*(-10*x^2-x+3)^(1/2)*x^3+7514888700*7^(1/2)*x*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-
x+3)^(1/2))+5530395150*(-10*x^2-x+3)^(1/2)*x^2+1218630600*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^
(1/2))+3644185860*(-10*x^2-x+3)^(1/2)*x+799893472*(-10*x^2-x+3)^(1/2))*(-2*x+1)^(1/2)/(3*x+2)^3/(-10*x^2-x+3)^
(1/2)/(5*x+3)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (5 \, x + 3\right )}^{\frac {3}{2}} {\left (3 \, x + 2\right )}^{4} \sqrt {-2 \, x + 1}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^4/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((5*x + 3)^(3/2)*(3*x + 2)^4*sqrt(-2*x + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {1-2\,x}\,{\left (3\,x+2\right )}^4\,{\left (5\,x+3\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1 - 2*x)^(1/2)*(3*x + 2)^4*(5*x + 3)^(3/2)),x)

[Out]

int(1/((1 - 2*x)^(1/2)*(3*x + 2)^4*(5*x + 3)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {1 - 2 x} \left (3 x + 2\right )^{4} \left (5 x + 3\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)**4/(3+5*x)**(3/2)/(1-2*x)**(1/2),x)

[Out]

Integral(1/(sqrt(1 - 2*x)*(3*x + 2)**4*(5*x + 3)**(3/2)), x)

________________________________________________________________________________________